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Abstract 

Animals learn the timing between consecutive events very easily. Their 
precision is usually proportional to the interval to time (Weber’s law for 
timing). Most current timing models either require a central clock and 
unbounded accumulator or whole pre-defined populations of delay lines, 
decaying traces or oscillators to represent elapsing time. Current adaptive 
recurrent neural networks fail at learning to predict the timing of future 
events (the ‘when’) in a realistic manner. In this paper, we present a new 
model of interval timing, based on simple temporal integrators, derived 
from drift-diffusion models. We develop a simple geometric rule to learn 
‘when’ instead of ‘what’. We provide an analytical proof that the model can 
learn inter-event intervals in a number of trials independent of the interval 
size and that the temporal precision of the system is proportional to the 
timed interval. This new model uses no clock, no gradient, no unbounded 
accumulators, no delay lines, and has internal noise allowing generations of 
individual trials. Three interesting predictions are made. 

 

1  Introduction 

The ability to learn timing of events is crucial to survival. When a temporal relationship 
exists between two events, it seems that its timing is acquired almost as fast as the discovery 
of the relationship itself [1;2]. However, the neurobiological process underlying time 
interval learning remains unclear [3]. Three main possible adaptive neural representations of 
time intervals have been proposed [4]: (i) sequences of active neurons (so called synfire 
chains) [5], (ii) increasing numbers of active bistable neurons over time [6], or (iii) 
increasing neural activity within each individual neuron over time [7]. While synfire chains 
(i) are assumed to be more realistic for delays on the order of milliseconds [8], the other two 
options are more likely representations in the multi-seconds range. Models of temporal 
representation should also reproduce Weber’s law for time, that is, that the timing precision 
of the model should be proportional to the timed interval. The growing population of active 
bistable neurons representation (ii) was recently shown to have this property [6] using both, 
abstract simple units, and a more realistic model of spiking neurons. But 
electrophysiological data suggesting that elapsing time could be represented through build-
ups of activity within individual neurons (iii) seem more abundant [4;7;9-11]. While some 
realistic spiking neuron models of adaptive climbing activity exist [7], they are not used in 
the interval timing literature. In this paper, we present a simpler and more abstract neural 
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model based on a drift-diffusion process of climbing neural activity. Such models are often 
used in decision making under noisy stimuli [12]. We extend them by developing a learning 
rule so that they can be used to learn time intervals rapidly. We show that such neural 
integrators could reproduce Weber’s law for time, under the hypothesis that noise in 
synapses is related to the synaptic efficacies (weight).  

2  Methods  

Consider a temporal conditioning situation: a situation in which once the animal is in the 
experimental chamber, rewards are delivered at a fixed rate. Let x(t) be the presence (1) or 
absence (0) of stimulus X (the chamber) at time t. Let y(t) be a sum of Dirac (δ(t)) delta 
functions marking event Y onsets (reward delivery) at time t1, t2, …, tn such that: 
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where ti is the time at which the ith event occurs. Let φ(t) be the output of a temporal 
integrator Φ predicting Y at time ti so that, starting from φ(ti-1+ε) = 0, we want φ(ti) = 1 and 
0 ≤ φ(t) ≤ 1, with infinitesimal small ε > 0. Let w be the synaptic weight connecting stimulus 
X to the integrator Φ. 

2 .1  System dynamics  

The integrator dynamics are defined using the following equation: 

 τϕτϕ ϕ dyxwdd −= ≠11  (2) 

with the initial conditions φ(0) = 0 and w(0) = ε. The first term of (2) indicates that φ 
integrates xw over time until it reaches 1. The second term indicates that if event Y occurs, 
the temporal integrator is reset to 0. To simplify, we assume this reset is instantaneous. 
Assuming w is constant, the integrator value φ(t) at time t is either equal to 1 or to the 
elapsed time in the presence of x since last event (at time ti) multiplied by the weight w. 
Thus, if x = 1 (animal in the chamber), ti < t < ti+1, and w constant, then: 
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For the remaining sections, we will assume x = 1 is always true to lighten notation. 

2 .2  Adaptat ion  dynamics  in  the  idea l  case  

We would like the temporal integrator to learn to predict the timing of the event Y by 
reaching its bound (1) at the moment Y occurs. If Y occurs at fixed intervals, then w would 
encode exactly that interval: 
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where Ii is the ith time interval (between event i-1 and i). 

  

Figure 1: The geometry of the integrator when the event Y occurs before it has reached its 
bound (left panel) and when it reaches its bound before the event Y occurs (right panel). The 
trajectory is drawn in solid lines; dashed lines represent the desired trajectory. 
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Consider Y occuring sooner than expected, i.e., ti is such that φ(ti) < 1 (Figure 1, left panel). 
Then w can be corrected such that φ reaches 1 at the next occurrence of Y (at time ti+1), 
assuming Y occurs at constant time intervals, using the rule: 

 ( ) τ
ϕ

ϕ
dywdw

−= 1
 (5) 

This means that a discrete corrective jump in w occurs at time ti. It is easy to prove 
geometrically that this would correct the timing perfectly if the next event occurs at the same 
interval. The elapsed time since the last event i-1 can be estimated from φi = φ(ti) and 
wi = w(ti-1+dτ) (the value of w during interval Ii, i.e. right after the update caused by the last 
event i-1), with Ii = φi/wi. If the intervals Ii are all of the same length, then a single trial is 
sufficient to correct the predicted time. On the next trial (i+1), φ(τ) = 1 exactly when τ = ti+1: 
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The same correction rule cannot be applied if the integrator predicts the event Y too early. 
The boundedness of the integrator does not allow it to remember time beyond the expected 
time (Figure 1, right panel). On the other hand, when φ reaches 1, the weight can be 
continuously decayed relative to the elapsed time since last event i (i.e., relative to its own 
value) such that w(t) = 1/(t-ti) until t = ti+1.The following decay maintains this property: 

 τϕ dwdw 2
11 =−=  (7) 

Solving the differential equation and integrating over the period when φ = 1 gives: 
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(8) 

On the next trial (i+1), φ(τ) = 1 exactly when τ = ti+1, that is φi+1 = wi+1Ii+1 = 1. 

The complete learning rule can be summarized in a single equation: 
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We remark that without loss of generality, a decreasing integrator (from 1 to 0) could be 
similarly constructed using the appropriate changes in bounds and sign in each rule.  

2 .3  Convergence  proof  

To simplify some of the following proofs, we will assume that there could be some cellular 
process marking the total change Δwi computed in (9) during interval Ii, but that after each 
event Y, only a small portion α of that change is actually applied to w such that: 
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The effect of this assumption will be discussed at the end of the section. 

Lemma 1  Let I1, I2, …, In be a sequence of n intervals, then given an appropriate learning 
rate schedule αi = 1/i, we will show that:  
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Proof: If follows from section 2.2 that: 

 1−=Δ+ iii Iww
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After the first interval, since α1 = 1, the full correction is made, and therefore, by (12) and 
(10), we have that w2 = I1

-1 exactly. Now, let’s assume (11) is true for n, then: 
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(13) 

Therefore, (11) is true by induction. 

Theorem 1  Let I1, I2, …, In be a sequence of n i.i.d. intervals with E[Ii] = μ and Var(Ii) = σ. 
Then given the learning rate schedule αi = 1/i, wn → E[I-1] in probability.  

Proof: {wn} forms a sequence of means of the inverse of the delays Ii, i ≤ n and by the weak 
law of large number, wn → E[I-1] in probability. The model is learning the reciprocal of the 
harmonic mean of the intervals.  

Theorem 2  Let I1, I2, …, In be a sequence of n i.i.d. intervals and let 0 < α < 1 constant. 
Then {1/wn} is an exponential moving harmonic average of the intervals. 

Proof: Starting again from (10), substituting Δwi using (12), and using induction, we get: 
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Note that the use of (12) in this proof is not equivalent to placing the learning rate α directly 
into (9). While theorems would remain true for the first term (when the event occurs before 
φ has saturated), the second term would push {wn} to converge to the harmonic mean of the 
event rate, i.e. the mean of the intervals: 
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While in general it could be preferable to learn the arithmetic mean of the interval, it is not 
clear which of the arithmetic or harmonic mean would best fit animal's data [13]. Some 
predictions related to the harmonic mean of the time intervals are made in section 3.3. 

2 .4  Noise  and  Weber ’s  law for t ime 

Adding Gaussian noise (Weiner process) to the accumulator and converting it into a 
stochastic differential system makes it a drift diffusion model (DDM, Figure 2, left panel) 
where w is the rate of evidence under stimulus x that the event Y will occur. Eq. (2) becomes 

 τϕτϕ ϕ dycdWxwdd −+= ≠11  (16) 

where cdW represent continuous time noise with distribution N(0,c2dt). The decision time 
DT (time of first occurrence of φ > θ for a threshold value 0 < θ ≤ 1) has mean and variance 

 [ ] 





=

2
tanh

c

w

w
DTE

θθ
(17) 

 
[ ] ( )yg

w

c

w
DTVar

2

2θ=  where 2c

w
y

θ−=  (18) 

as shown previously [14;15]. In the current system, we keep θ = 1, w = E[I-1]. If there is no 
noise (c2 → 0), then tanh(wθ/c2) → 1. To maintain a linear temporal precision, that is to have 
E[DT]/STD[DT] = z, a constant independent of the distribution of Ii, one has to choose 
c2 = β2w for some constant β > 0. Thus cdW = N(0, β2wdτ) and we get: 
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Since w ≈ E[I-1], we get that both the expected response time and the standard deviation on 
the expected response time are proportional to the estimated interval length encoded in w. 

 

Figure 2: Results from fixed-interval temporal-conditioning Experiment 1 (β = .15, θ = .85, 
α = 0.1) Left: Examples of few realizations of φ between consecutive events for a unit 
trained on 1s fixed-interval. φ is bounded below by 0 and the upper bound (1) is an 
absorbing process (see section 3). We say that there is a response when φ > θ. Right: 
Estimated time encoded in the weight w (1/w) as a function of trials for the first 100 trials. 
The number of trials to learn the delay is clearly independent of the time interval length. 

2 .5  Other proper t i e s  

It is interesting to see that this model can have different and equally valid interpretations. 
First, at any moment, φ/w is an estimate of the expected elapsed time since the last event and 
(1-φ)/w is an estimate of the expected time until the next event, since 1/w is an estimate of 
the inter-event interval. Second, the threshold crossing of the integrator can be used to 
generate events under fixed weights, making it a generative model. Exact mean response 
time and timing precision also vary between animals in timing experiments. If one can 
determine a distribution for these variables, then β and θ can be sampled from it and the 
model could technically be used to study both, the intra- and inter-subjects variability. 

3  Results  

To simplify the simulation, we considered the upper bound 1 on φ as an absorbing process 
(eq. (16), once the accumulator is at 1, noise cannot bring it back down). We also put a lower 
bound of 0 on φ. This second change may affect (17) to (20), but the simulations below show 
that this change does not affect the time-scale invariance property of the model. 

In temporal conditioning, reward is delivered regularly, independently of the animal 
behavior, and without any extra stimulus to mark the beginning of the interval. The reward 
delivery marks the beginning of a new interval. Under this simple protocol, animals learn 
that the reward comes regularly and also learn the approximate interval between rewards.  
They usually begin to actively try to get a reward after about 85% of the time interval 
(Figure 3, left panel) [1;16]. More complex conditioning procedures, interleaving random 
inter-trial intervals (without stimuli) and trial intervals (fixed temporal interval marked by a 
stimulus and terminating by a reward), can be used to evaluate the animal’s timing precision. 
To do so, one can insert probe trials which are longer than trial intervals and which are not 
rewarded. Under such a procedure, one can see that the animal precision is always 
proportional to the interval length, with a precision of about 15% (Figure 3, right panel) 
[2;17]. One of the most important features a timing model should have is that the curves for 
different time scales should overlap when scaling the temporal axis appropriately (by the 
ratio of time scales). Finally, animals seem to learn the timing as fast as they acquire a 
response [1;2]. The following experiments shows that the present model (assuming x is the 
stimulus marking the interval), can reliably reproduce behavioral data under these 
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conditions, considering φ > θ as a response (Figure 2, left panel).  

Figure 3: Unpublished empirical data coming from a rat trained on a 60s fixed-interval 
conditioning schedule. Left: Responses with respect to elapsed time. Right: Waiting time 
distribution before responding. The curves at different time scales have the same shape. 

3 .1  Exper iment  1 :  F ixed- in terva l  t empora l - condi t ion ing  

In Experiment 1, we run the model through 200 consecutives trials of fixed-interval 
temporal-conditioning. We used noise with β = 0.15, since animal data show an average 
standard deviation over response time of about σ = 0.15μ, and θ = 0.85, since animals start to 
respond at about 85% of the time interval [1;2;16;17]. We also set α = 0.1. We tested the 
model on four distinct intervals: 1s, 15s, 90s and 360s. In all four simulations, learning the 
timing took less than 20 trials (Figure 2, right panel). That is, learning the timing of the 
predictable event is easy [1;2] and independent of the time interval length to learn. After 100 
trials, the timing encoded in the weight is within 3% error of the true interval length. 
Moreover, the response curve nicely reproduces the FI scallop (Figure 4, left panel) with the 
probability of mid-point response being at about 85% of the time interval, as well as its 
time-scale invariance. 

 

 
Figure 4: Model results from fixed-interval temporal-conditioning, scaled by the time 
interval length, comparable to animal data shown on Figure 3. In both cases, the model 
closely matches animal behavior. These results also show that the model is time-scale 
invariant. Left: Response probability with respect to elapsed time since last event, averaged 
over the last 100 trials of Experiment 1. In both experiments, the mid-response point is at 
about 85% of the interval, as set through the parameter θ. Right: Probability distribution of 
the first response since last event from Experiment 2.The standard deviation over mean is 
about 15%, as set through the parameter β. 

3 .2  Exper iment  2 :  F ixed- in terva l  responses  d i s tr ibut ions   

In Experiment 2, we ran the model through 500 probe trials using a fixed interval three times 
longer than the encoded interval. To do that, we directly encoded the desired delay into the 
weight w and set the model’s learning rate to α = 0. We did that to show that the response 
probability distribution (Figure 4, left panel) and the first response time probability 
distribution (Figure 4, right panel) are time-scale invariant, in agreement with animal data 
[2;13]. The deviation in first response time is σ = 0.15μ and the mid-response point is at 
about 85% of the time interval, as set through β and θ.   

3 .3  Exper iment  3 :  Normal ly  d i s tr ibuted  interva l s  

In Experiment 3, we run the model as in Experiment 1 but using normally distributed 
intervals N(a,(ab)2), where a ε {1s, 15s, 90s} and b ε {.01, .05, .1, .5} instead of fixed 
intervals. When the environment variance is below the model variance (b < β  = .15), the 
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response curves are similar to those found using fixed intervals (Figure 4) and the mean 
encoded in the weight is close to the true mean of the interval (note that for b < .15, the true 
mean is close to the harmonic mean of the distribution). When the variance gets larger 
(b = 0.5), the model variance increases and the average encoded value converges to the 
harmonic mean of the interval distribution, hence the model tends to react more quickly than 
under fixed intervals. Animals seeing intervals based on a distribution made from the sum of 
a fixed and exponentially distributed intervals tend to underestimate the exponential part of 
the mean and react sooner [18], favoring the harmonic mean hypothesis. 

4  Discussion 

A complete literature review of interval timing psychological and neural models is outside 
the scope of this paper. But relations to some important models must be discussed. 

4 .1  Relat ion  to  SET and  RET 

The model presented here is based on a temporal accumulator like SET (scalar expectancy 
theory) [13], but without a central ticking clock (or pulse generator) nor any unbounded 
accumulator. It can be seen as a continuous, more neural, version of SET, requiring only a 
continuous stream of non-zero input (x) that can be provided by the presence of a stimulus or 
some steady-state working memory. Also in contrast to SET, the model adapts directly the 
accumulator rate to match the intervals it must learn, allowing it to work with bounded 
accumulators. Like SET, it is time-scale invariant, the accumulator remains more or less 
stable during gaps (when x = 0), and noise in the system is related to the intervals stored in 
memory. In contrast to SET, that samples an interval value only once from the memorized 
distribution, the present model continuously reads the interval length from the weight that 
encodes it by integrating xw over time; a more neural form of memory. 

The model is also related to RET (rate estimation theory) [13]. But RET is not an interval 
timing theory, it is only a conditioning theory and it also requires unbounded accumulators. 
It attempts to explain how stimulus, trial and intertrial intervals, and reinforcement interact 
and determine the acquisition of a conditioned response (but it does not tell when, within a 
trial, one would respond). The model presented here does not yet provide an explanation for 
these conditioning phenomena. Nevertheless, it is related to RET, since like RET, it depends 
on learning an estimate of events rate under different stimuli. The weight w learned in the 
present model is therefore similar to the rate estimates λ in RET. By generalizing Eq. (16) to 
an evidence rates vector w associated with a stimuli vector x, the model could serve as both 
an associative model of conditioning (what RET is) and a temporal map for timing 
predictions [2]. Since elapsed time and conditional expected time are always available 
within the unit’s activity in our model, it is easy to think of a learning rule that could credit 
timing error to different stimuli based on such information. More work has yet to be done to 
account for the wide amount of empirical conditioning data RET is able to explain, but 
promising research in that direction are currently undertaken in our laboratory. 

The present model not only subsumes the useful properties of SET, it does so in a more 
neurally realistic way than SET. Moreover, it allows us to think that it may eventually 
integrate all the great features of SET and RET within a unified adaptive decision model 
instead of two separate ones.  

4 .2  Relat ion  to  o ther bu i ld -up mode ls  

Two classes of neural temporal build-ups have been proposed: (a) a population of neurons 
whose individual activity increases (or decreases) as a function of elapsed time [7], and (b) a 
population of bistable neurons whose number of active neurons increases over time [6]. The 
present model is definitely in the first category. 

General models of bistable neurons as in (b) were shown to have time scale-invariance, an 
important property to match behavioural data [6]. Almeida & Ledberg [6] model’s has some 
commonality with the present model and even proposes some neural implementation. The 
main difference relies on the specific type of units used. In a population of bistable neurons, 
individual neurons contain no information about elapsed time; such information could only 
be inferred from the population read-out. In the present model, each individual unit has its 
own time estimate. This is a fundamental difference between representations (a) and (b). 



Finally, although Almeida & Ledberg [6] provide a learning rule, it is not clear how fast and 
easily it would converge, something clearly described and analyzed in our model.  

Moreover, neural build-up of activity related to elapsed time as in (a) has been 
electrophysiologically observed in numerous brain regions [4;7;9-11]. Durstewitz [4] is 
making strong arguments in favour of this kind of model, but only few attempts at designing 
and evaluating such models appear in the literature. Reutimann and collaborators [7] 
developed such a model using spiking neurons, but the model presented here is more 
abstract, simpler,  easier to analyze, has a clear and powerful learning rule, and has time-
scale invariance.  

The model presented here is an important milestone in our current understanding of interval 
timing by not only proposing an abstract neural model of interval timing that can accurately 
reproduce time scale invariance, but also by yielding activity that best matches with a 
majority of observed neural data. Most of all, it provides a simple, local learning rule that 
can be proved to learn timing rapidly and accurately. 

4 .3  Relat ionship  to  dec i s ion  making  

DDM parameters w, θ, and c are often fixed to fit response curves (reaction time) such as in 
two forced-choice tasks under very noisy inputs. In this paper, we show that the parameter w 
can be learned from experience (by the subject) and could correspond to the mean reaction 
time under noise free observation of a stimulus (x = 1); θ is related to the fraction of the 
interval the animal waits before responding; and c must be tightly linked to w. The animal 
reacts when it has accumulated enough evidence that the reward is about to occur (when 
φ > θ) based on how long the conditioned stimulus is presented. Under a fixed interval 
schedule, the probability of reward to occur at any moment is related to the elapsed time.  

5  Conclusion 

The proposed model can learn any fixed time interval in O(1/α) trials (where α is the 
learning rate), independently of the interval length or of the previously learned value. With 
α = 0.1, any time interval can be learned in about 20 trials. The timing error in the system 
(standard deviation) is proportional to the timed interval; the model is thus truly time-scale 
invariant. The response curves on fixed-interval temporal conditioning nicely fit the 
empirical data seen in animals. It does not only reproduce the population average response, 
but its whole distribution, allowing for analysis of individual realizations.  

The model is extremely simple. The learning is based on a single weight and a single 
activity. No population of decays or eligibility traces, no delay-lines, nor any other form of 
large memory or history. The geometrical solution of the adaptive criterion makes it simple 
to understand and the model’s property fit nicely SET theory, without the burden of 
unbounded accumulator and central clock. Moreover, the model’s hyper-parameters α, β, and 
θ, can be estimated easily for any specific experimental preparation and can be used directly 
into the model without requiring tedious model fitting procedure. The results were not only 
showed true by simulations, but the properties were proved analytically. 

An important aspect of this model is that the weights represent the contribution to event 
rates the connected stimulus is providing in accordance with RET theory. In agreement with 
SET theory, the noise is related to reading the memorized time value. The model makes three 
interesting predictions. First, if w is related to the synaptic efficacies, then the variance of 
the noise in the synaptic transmission (noise in computing xwdτ+cdW) must have variance 
proportional to the square root of the synaptic efficacies (since c2 = β2w). Second, under 
normally distributed random intervals with standard deviation less than 15%, we should see 
little or no behavioral difference than under fixed-interval. Third, if the animals use a similar 
learning rule related to the harmonic mean of the intervals, than under higher variance, we 
should see an underestimate of the true mean of the distribution of the intervals. 

Research to generalize the model to multiple stimuli while reproducing conditioning data 
accurately are undergoing in our lab. This paper presents a new simple way to use a drift-
diffusion model for interval timing with a simple yet powerful learning rule. This may serve 
as a new basis to replace delay-lines representations of time and memory and eventually lead 
to learn powerful temporal associative maps. 



Acknowledgements 

We are grateful to Elliot Ludvig for discussion in the development of the present work and 
for the empirical data used in Figure 3. We are also grateful to NSERC and Canada Research 
Chairs for their generous support. 

References 
[1] Balsam, P. D., Drew, M. R., & Yang, C. (2002). Timing at the start of associative learning. 
Learning and Motivation 33(1): 141-155. 

[2] Balsam, P. D. & Gallistel, C. R. (2009). Temporal maps and informativeness in associative 
learning. Trends Neurosci. 32(2): 73-78. 

[3] Ivry, R. B. & Schlerf, J. E. (2008). Dedicated and intrinsic models of time perception. Trends Cogn 
Sci. 12(7): 273-280. 

[4] Durstewitz, D. (2004). Neural representation of interval time. Neuroreport 15(5): 745-749. 

[5] Buonomano, D. V. (2005). A learning rule for the emergence of stable dynamics and timing in 
recurrent networks. J.Neurophysiol. 94(4): 2275-2283. 

[6] Almeida, R. & Ledberg, A. (2009). A biologically plausible model of time-scale invariant interval 
timing. J.Comput.Neurosci. 

[7] Reutimann, J., Yakovlev, V., Fusi, S., & Senn, W. (2004). Climbing neuronal activity as an event-
based cortical representation of time. J.Neurosci. 24(13): 3295-3303. 

[8] Karmarkar, U. R. & Buonomano, D. V. (2007). Timing in the absence of clocks: encoding time in 
neural network states. Neuron 53(3): 427-438. 

[9] Komura, Y., Tamura, R., Uwano, T., Nishijo, H., Kaga, K., & Ono, T. (2001). Retrospective and 
prospective coding for predicted reward in the sensory thalamus. Nature 412(6846): 546-549. 

[10] Leon, M. I. & Shadlen, M. N. (2003). Representation of time by neurons in the posterior parietal 
cortex of the macaque. Neuron 38(2): 317-327. 

[11] Lebedev, M. A., O'Doherty, J. E., & Nicolelis, M. A. (2008). Decoding of temporal intervals from 
cortical ensemble activity. J.Neurophysiol. 99(1): 166-186. 

[12] Gold, J. I. & Shadlen, M. N. (2007). The neural basis of decision making. Annu.Rev.Neurosci. 
30: 535-574. 

[13] Gallistel, C. R. & Gibbon, J. (2000). Time, rate, and conditioning. Psychol.Rev. 107(2): 289-344. 

[14] Wagenmakers, E. J., Grasman, R. P. P. P., & Molenaar, P. C. M. (2005). On the relation between 
the mean and the variance of a diffusion model response time distribution. Journal of Mathematical 
Psychology 49(3): 195-204. 

[15] Bogacz, R., Brown, E., Moehlis, J., Holmes, P., & Cohen, J. D. (2006). The physics of optimal 
decision making: a formal analysis of models of performance in two-alternative forced-choice tasks. 
Psychol.Rev. 113(4): 700-765. 

[16] Church, R. M. (2003). A Concise Introduction to Scalar Timing Theory. In W.H.Meck (Ed.), 
Functional and Neural Mechanisms of Interval Timing, pp. 3-22. Boca Raton: CRC Press. 

[17] Gallistel, C. R. (2003). Time has come. Neuron 38(2): 149-150. 

[18] Kirkpatrick, K. & Church, R. M. (2003). Tracking of the expected time to reinforcement in 
temporal conditioning procedures. Learn.Behav. 31(1): 3-21. 

 

 


